List of Value-Added Courses in Mathematics

VAC-1 Basic Mathematics

Unit I: Differential Calculus

Limits and differentiation-Derivative of functions- Derivative interactive graphs-Differential Equations in Physics
Unit II: Integral Calculus
Finite sums- Limits of finite sums-Definite integrals-Integration of functions-Fundamental theorem of calculus
Unit III: Determinant and Matrix
Basics of determinants and matrices-Types of matrices- Simultaneous linear equationsEigenvalue and eigenvectors-Matrices in Physics
Unit IV: Vector Calculus
Differentiation of vectors-Gradient, divergence, curl-Integration of vectors-line, surface and volume integral

VAC-2 Advanced Mathematics
Unit I: Few Basic Functions in Physics
Plotting of functions-Beta and Gamma Function-Riemann Zeta Function-Dirac Delta Function
Unit II: Statistics
Mean, Mode, Median, Correlation and Regression
Unit III: Probability
Probability, Multiplicity, Combinatorics-Bernoulli Distribution-Poisson and Gaussian
Distribution
Unit IV:

VAC-3 Introduction to SCILAB
Unit I: INTRODUCTION TO SCILAB Introduction to Numerical Computing Various Software Alternatives History Installation Workspace Command Prompt Variable Browser SciNotes

Unit II: Working with Scilab Files Formatting Command Prompt Display Operator Precedence Variable Browser Window Clearing Variables Comments Predefined Constants Common Mathematical Functions Variable Assignment Operator = Naming Conventions for Variables Global and Local Variables List of Variables Data Types Numerical Data How to Store Floating Point Numbers Formatted Display of Numbers Boolean Data Strings

Unit III: ARRAYS and Loops Introduction Arrays and Vectors Operations on Arrays and Vectors Elementwise Operations Matrix Multiplication Inverse of Matrices $\operatorname{det}() \operatorname{rank}()$ trace() meshgrid, ndgrid Magnitude of a Vector Random Matrix, Using Indices to Make New Vectors Slicing Appending Rows and Columns Deleting a Row and/or Column of a Matrix Concatenation along a Dimension Logical Operations on Arrays Automatic Generation of Vectors Linearly Spaced Vectors Logarithmically Spaced Vectors Matrix Manipulations Scaling a Matrix Reshaping a Matrix Special Matrices Upper and Lower Triangular Matrices.

Introduction Loops while Infinite Loops for if-else, if-else
Unit IV: PLOTTING Introduction 2D Plotting plot(x, y) plot2d(), plot2d2(), plot2d3(), and plot2d4() polarplot() Plotting Multiple Plots in the Same Graph Plotting Multiple Plots Separately 3D Plots

Course outcome

1. Evaluate, analyse and plot results.
2. Develop programs in SciLab
3. Understanding of linear algebra and numerical methods
4. Analyse various SciLab commands
5. Implement and illustrate 2-D graphs and 3-D graphs.

VAC-4 Mathematical Modelling

Unit I: Role of Mathematics in problem-solving, characteristics of Mathematical Modelling, Problem definitions, Unit II: System Characterizations: System vs Variable vs Parameter, System vs Environment, Relationship between variables, Static vs Dynamic, Continuous Time vs Discrete Time, Mathematical formulations, Analysis of Mathematical formulations.
Unit III: Simple population growth model, Simple Epidemics model, Preypredator model, Linear growth and decay model, Non-Linear growth and decay model
Unit IV: Deterministic models and Stochastic models

VAC-5 Basic Algebra

Unit I: The Integers

Properties of Integers, Greatest common divisor, Unique Factorization, Mathematical Induction, Equivalence Relations and Congruences.
Unit II: Groups
Definition and examples of Groups, Finite groups, Subgroups, Cyclic groups, Permutation groups.
Unit III: Group Homomorphisms
Definition and Examples, Properties of Homomorphism.
Unit IV: Ring Theory
Rings, Ideals, Ring Homomorphisms, Polynomial Rings.

VAC-6 Numerical Methods
Unit I: Roots of Algebraic and Transcendental Equations
Introduction to significant digits and errors, Bisection method, Regula-Falsi method, Newton-Raphson method and convergence criteria
Unit II: Solution of system of linear Equations
Direct methods, Iterative methods, Ill-conditioned systems
Unit III: Interpolation
Finite difference operators, difference tables, Newton's Forward/Backward difference, Divided differences, Lagrange interpolation and Newton's divided difference interpolation
Unit IV: Numerical Differentiation and Integration
Numerical Differentiation using Forward/Backward formula, Trapezoidal and Simpson's rules for integration
Unit V: Solution of ordinary differential equations
Picards method, Euler method, Euler modified method and Runge-Kutta methods

