

Dr. Bhimrao Ambedkar University, Agra

A State University of Uttar Pradesh (Paliwal Park, Agra -282004) www.dbrau.ac.in

A Documentary Support for Matric No. – 1.1.1 Programme Outcomes & Course Outcomes

under the **Criteria – I**

(Curriculum Design and Development)

Key Indicator - 1.1

in Matric No. – 1.1.1

B. SC. (ZOOLOGY)

Name	Designation	Affiliation			
Steering Committee					
Mrs. Monika S. Garg, (I.A.S.)	Additional Chief Secretary	Dept. of Higher Education U.P., Lucknow			
Chairperson Steering					
Committee					
Prof. Poonam Tandan	Professor,	Lucknow University, U.P.			
	Dept. of Physics				
Prof. Hare Krishna	Professor,	CCS University Meerut, U.P.			
	Dept. of Statistics				
Dr. Dinesh C. Sharma	Associate Professor,	K.M. Govt. Girls P.G. College Badalpur, G.B.			
	Dept. of Zoology	Nagar, U.P.			
Supervisory Committee-Science Faculty					
Dr. Vijay Kumar Singh	Associate Professor,	Agra College, Agra			
	Dept. of Zoology				
Dr. Santosh Singh	Dean,	Mahatma Gandhi Kashi Vidhyapeeth, Varanasi			
	Dept. of Agriculture				
Dr. Baby Tabussam	Associate Professor,	Govt. Raza P.G. College Rampur, U.P.			
	Dept. of Zoology				
Dr. Sanjay Jain	Associate Professor,	St. John's College, Agra			
	Dept. of Statistics				

Syllabus Developed by:

S.No.	Name	Designation	Department	College/University
1.	Dr. Monisha Banerjee	Professor & Dean,	Zoology	University of Lucknow,
		Research		Lucknow
2.	Dr. Samar Vir Singh Rathore	Assistant Professor	Zoology	St. John's College, Agra
3.	Dr. Praveen Ojha	Assistant Professor	Zoology	Kishori Raman PG College,
				Mathura

Semester-wise Titles of the Papers in B.Sc (Zoology)

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
1	I	B050101T	Cytology, Genetics and Infectious Diseases	Theory	04
		B050102P	Cell Biology and Cytogenetics Lab	Practical	02
	II	B050201T	Biochemistry and Physiology	Theory	04
		B050202P/R	Physiological, Biochemical &Hematology Lab	Practical/Field work	02
2	III	B050301T	Molecular Biology, Bioinstrumentation & Biotechniques	Theory	04
		B050302P	Bioinstrumentation& Molecular Biology Lab	Practical	02
	IV	B050401T	Gene Technology, Immunology and Computational Biology	Theory	04
		B050402P/R	Genetic Engineering and Counselling Lab	Practical/Field work	02
3	V	B050501T	Diversity of Non-Chordates, Parasitology and Economic Zoology	Theory	04
		B050502T	Diversity of Chordates and Comparative Anatomy	Theory	04
		B050503P	Lab on Virtual Dissection, Anatomy, Economic Zoology and Parasitology	Practical	02
	VI	B050601T	Evolutionary and Developmental Biology	Theory	04
		B050602T	Ecology, Ethology, Environmental Science and Wildlife	Theory	04
		B050603P	Lab on Environmental Science, Behavioral Ecology, Developmental Biology, Wildlife, Ethology	Practical	02

Proposed Year wise Structure of UG Program in Zoology

Programme/Year	Semester	Course Codes	Paper Title	Credits	Teaching Hours
1	I	B050101T	Cytology, Genetics and Infectious Diseases	04	60
Certificate	_	B050102P	Cell Biology & Cytogenetics Lab	02	60
Course in Medical		B050201T	Biochemistry and Physiology	04	60
Diagnostics & Public Health	II	B050202P/R	Physiological, Biochemical &Hematology Lab	02	60
2	III	B050301T	Molecular Biology, Bioinstrumentation & Biotechniques	04	60
Diploma in Molecular Diagnostics and		B050302P	Bioinstrumentation & Molecular Biology Lab	02	60
Genetic Counselling	IV	B050401T	Gene Technology, Immunology and Computational Biology	04	60
		B050402P/R	Genetic Engineering and Counselling Lab	02	60
		B050501T	Diversity of Non-Chordates, Parasitology and Economic Zoology	04	60
	V	B050502T	Diversity of Chordates and Comparative Anatomy	04	60
3 Degree in Bachelor of Science		B050503P	Lab on Virtual Dissection, Anatomy, Economic Zoology and Parasitology	02	60
Science	VI B0506	B050601T	Evolutionary and Developmental Biology	04	60
		B050602T	Ecology, Ethology, Environmental Science and Wildlife	04	60
		B050603P	Lab on Environmental Science, Behavioral Ecology, Developmental Biology, Wildlife, Ethology	02	60

Subject prerequisite

To study Zoology in undergraduate, a student must have studied Biology, Biotechnology or Life Science in Class 12.

Programme Objectives (POs)

- 1. The programme has been designed in such a way so that the students get the flavour of both classical and modern aspects of Zoology/Animal Sciences. It aims to enable the students to study animal diversity in Indian subcontinent, environmental science and behavioural ecology.
- 2. The modern areas including cell biology and genetics, molecular biology, biochemistry, physiology followed by biostatistics, Evolutionary biology, bioinformatics and genetic engineering have been included to make the study of animals more interesting and relevant to human studies which is the requirement in recent times.
- 3. The lab courses have been designed in such a way that students will be trained to join public or private labs.

Cei	Certificate Course in Medical Diagnostics & Public Health				
	B.Sc I Programme Specific Outcomes (PSOs)				
PSO1	This course introduces System Biology and various functional				
	components of an organism. Emphasis will be on physiological				
	understanding abnormalities and anomalies associated with white blood				
	cells and red blood cells. The course emphasizes cell identification, cell				
	differentiation and cell morphology evaluation procedures. This will				
	enhance hematology analytical skills along with skill of using many				
	instruments.				
PSO 2	The students will learn the basic principles of genetics and how to				
	prepare karyotypes to study the chromosomes.				
PSO 3	How chromosomal aberrations are inherited in humans by pedigree				
	analysis in fam <mark>ilie</mark> s.				
PSO 4	The students will have hands-on training in the techniques like				
	microscopy, centrifugation and chromatography, and various				
	biochemical techniques, preparation of slides which will help them in				
	getting employment in pathology labs and contribute to health care				
	system.				
PSO 5	The Certificate courses will enable students to apply for technical				
	positions in government and private labs/institutes.				

PSO 1 The student at the completion of the course will be able to have a deta and conceptual understanding of molecular processes viz. DNA to trait differential regulation of genes in prokaryotes and eukaryotes leads to development of an organism from an embryo. PSO 2 The students will be able to understand and apply the principles techniques of molecular biology which prepares students for further or in molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important roapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to have their own start-ups as well. PSO 4 The basic tools of bioinformatics will enable students to analyze	
and conceptual understanding of molecular processes viz. DNA to trait differential regulation of genes in prokaryotes and eukaryotes leads to development of an organism from an embryo. PSO 2 The students will be able to understand and apply the principles techniques of molecular biology which prepares students for further continuous in molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to have their own start-ups as well.	
differential regulation of genes in prokaryotes and eukaryotes leads to development of an organism from an embryo. PSO 2 The students will be able to understand and apply the principles techniques of molecular biology which prepares students for further or in molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to have their own start-ups as well.	ailed
PSO 2 The students will be able to understand and apply the principles techniques of molecular biology which prepares students for further coin molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important respectively.	. The
PSO 2 The students will be able to understand and apply the principles techniques of molecular biology which prepares students for further continuous in molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important respectively.	o the
techniques of molecular biology which prepares students for further continuous in molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important reapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it.	
in molecular biology. Independently execute a laboratory experiment the standard methods and techniques. PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important roapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students to play an important roapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students are their own start-ups as well.	and
PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important roapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students are their own start-ups as well.	areer
PSO 3 The principles of genetic engineering, gene cloning, immunology related technologies will enable students to play an important roapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students are their own start-ups as well.	using
related technologies will enable students to play an important roapplications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Students are their own start-ups as well.	
applications of biotechnology in various fields like agriculture, for sciences, industry and human health and make a career out of it. Stuccan have their own start-ups as well.	and
sciences, industry and human health and make a career out of it. Stuccan have their own start-ups as well.	le in
can have their own start-ups as well.	ensic
	dents
PSO 4 The basic tools of higher properties will enable students to analyze	
The basic tools of biolinormatics will enable students to analyze	large
amount of genomic data and its application to evolutionary biology.	Apply
knowledge and awareness of the basic principles and concepts of bio	logy,
computer science and mathematics existing software effectively to ex	ctract
information from large databases and to use this information in com	puter
modeling.	
PSO 5 The Diploma courses will ensure employability in Hospitals/Diagno	
and Pathology labs with good hands-on training. It will also en	nable
students to take up higher studies and Research as their career and	work
in renowned labs in the country and abroad.	

	Degree in Bachelor of Science				
	B.Sc III Programme Specific Outcomes (PSOs)				
PSO1	 This programme aims to introduce students to animal diversity of 				
	invertebrates and vertebrates. The students will be taught about				
	invertebrates and vertebrates using observational strategies, museum				
	specimens and field reports.				
PSO 2	 A variety of interacting processes generate an organism's heterogeneous 				
	shapes, size, and structural features.				
PSO 3	 Inclusion of ecology and environmental sciences will enrich students with 				
	our world which is crucial for human well being and prosperity. This section				
	will provide new knowledge of the interdependence between people and				
	nature that is vital for food production, maintaining clean air and water,				
	and sustaining biodiversity in a changing climate.				
PSO 4	 Students will also come to know about the basic principle of life, how a cell 				
	divides leading to the growth of an organism and also reproduces to form				
	new organisms.				
PSO 5	 The basic concepts of biosystematics, evolutionary biology and biodiversity 				
	will enable students to solve the biological problems related to				
	environment.				
PSO 6	 At the end of the course the students will be capable enough to 				
	comprehend the reason behind such a huge diversity of animals and reason				
	out why two animals are grouped together or remain separate				
	due to similarities and differences which exist at many levels along with				
	ecological, environmental and cellular inputs.				
PSO 7	 The Degree courses will enable students to go for higher studies like 				
	Masters and Ph.D in Zoology and Allied subjects.				

Programme/Class: Certificate	Year : First	Semester: First		
Subject: ZOOLOGY				
Course Code: B050101T	Course Title: Cytology, Genetics and Infectious Diseases			

The student at the completion of the course will be able to:

- Understand the structure and function of all the cell organelles.
- Know about the chromatin structure and its location.
- To be familiar with the basic principle of life, how a cell divides leading to the growth of an organism and also reproduces to form new organisms.
- How one cell communicates with its neighboring cells?
- Understand the basic principles of genetics and how genes (earlier called factors) are inherited from one generation to another.
- Understand the Mendel's laws and the deviations from conventional patterns of inheritance.
- Comprehend how environment plays an important role by interacting with genetic factors.
- How to detect chromosomal aberrations in humans and study the pattern of inheritance by pedigree analysis in families.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P:4-0-0

Unit	Topics	Total No. of
		Lectures (60)
I	Structure and Function of Cell Organelles I	6
	 Plasma membrane: chemical structure—lipids and proteins 	
	 Cell-cell interaction: cell adhesion molecules, cellular junctions 	
	 Endomembrane system: protein targeting and sorting, endocytosis, 	
	exocytosis	
	Introduction to all national and international Biologists (Zoologists) who have contributed/contributing to Zoological and Life Sciences	
	as a mark of tribute to ancient and modern biology will be included	
	as part of the Continuous Internal Evaluation (CIE)	
II	Structure and Function of Cell Organelles II	6
	 Cytoskeleton: microtubules, microfilaments, intermediate filaments 	
	 Mitochondria: Structure, oxidative phosphorylation 	
	 Peroxisome and ribosome: structure and function 	
III	Nucleus and Chromatin Structure	8
	 Structure and function of nucleus in eukaryotes 	
	 Chemical structure and base composition of DNA and RNA 	
	 DNA supercoiling, chromatin organization, structure of 	
	chromosomes	
	 Types of DNA and RNA 	

IV	Cell cycle, Cell Division and Cell Signalling	8
	 Cell division: mitosis and meiosis 	
	 Cell cycle and its regulation, apoptosis 	
	 Signal transduction: intracellular signaling and cell surface receptors, 	
	via G-protein linked receptors, JAK-STAT pathway	
V	Mendelism and Sex Determination	8
V		0
	Basic principles of heredity: Mendel's laws, monohybrid and dibubrid crosses.	
	dihybrid crosses	
	Complete and Incomplete Dominance	
	Penetrance and expressivity	
	Genic Sex-Determining Systems, Environmental Sex Determination,	
	Sex Determination in <i>Drosophila</i> , Sex Determination in Humans	
	 Sex-linked characteristics and Dosage compensation 	
VI	Extensions of Mendelism, Genes and Environment	8
	 Extensions of Mendelism: Multiple Alleles, Gene Interaction 	
	 The Interaction Between Sex and Heredity: Sex-Influenced and Sex- 	
	Limited Characteristics	
	 Cytoplasmic Inheritance, Genetic Maternal Effects 	
	Genomic Imprinting, Anticipation	
	 Interaction Between Genes and Environment: Environmental Effects 	
	on Gene Expression, Inheritance of Continuous Characteristics	
VII	Human Chromosomes and Patterns of Inheritance	8
	Human karyotype	
	Chromosomal anomalies: Structural and numerical aberrations with	
	examples	
	Pedigree analysis	
	 Patterns of inheritance: autosomal dominant, autosomal recessive, 	
	X-linked recessive, X-linked dominant	
VIII	Infectious Diseases	8
	 Introduction to pathogenic organisms: viruses, bacteria, fungi, 	
	protozoa, and worms.	
	 Structure, life cycle, pathogenicity, including diseases, causes, 	
	symptoms and control of common parasites: <i>Trypanosoma, Giardia</i>	
	and Wuchereria	
Suggested F	Pondings.	

- 1. Lodish et al: Molecular Cell Biology: Freeman & Co, USA (2004).
- 2. Alberts et al: Molecular Biology of the Cell: Garland (2002).
- 3. Cooper: Cell: A Molecular Approach: ASM Press (2000).
- 4. Karp: Cell and Molecular Biology: Wiley (2002). Pierce B. Genetics. Freeman (2004).
- 5. Lewin B. Genes VIII. Pearson (2004).
- 6. Watson et al. Molecular Biology of the Gene. Pearson (2004).
- 7. Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis KubyKuby Immunology. W H Freeman (2007).
- 8. Delves Peter J., Martin Seamus J., Burton Dennis R., Roitt Ivan M. Roitt's Essential Immunology, 13th Edition. Wiley Blackwell (2017).
- 9. Shetty Nandini Immunology Introductory Textbook. New Age International. (2005)

Course Books published in Hindi may be prescribed by the Universities and Colleges

Course prerequisites: To study this course, a student must have had the subject biology in class/12th

Suggested Continuous Evaluation Methods:

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the End of the whole syllabus any remarks/ suggestions: None

Programme/Class: Certificate	Year : First	Semester : First			
Subject: ZOOLOGY					
Course Code: B050102P	Course Title: Cell Biology & Cytogenetics Lab				

At the completion of the course students will learn Hands-on:

- 1. To use simple and compound microscopes.
- 2. To prepare slides and stain them to see the cell organelles.
- 3. To be familiar with the basic principle of life, how a cell divides leading to the growth of an organism and also reproduces to form new organisms.
- 4. The chromosomal aberrations by preparing karyotypes.
- 5. How chromosomal aberrations are inherited in humans by pedigree analysis in families.
- 6. The antigen-antibody reaction.

Credits: 2	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P:0-0-4

Unit	Topics	Total No. of
		Lectures (60)
I	1. To study different cell typessuch asbuccal epithelial cells, neurons,	15
	striated muscle cells using Methylene blue.	
	2. To study the different stages of Mitosis in root tip of onion.	
	3. To study the different stages of Meiosis in grasshopper testis.	
	4. To prepare molecular models of nucleotides, amino acids, dipeptides	
	using bead and stick method.	
	5. To check the permeability of cells using salt solution of different	
	concentrations.	
II	1. Study of parasites (eg. Protozoans, helminths etc.) from permanent	15
	slides.	
	2. To learn the procedures for preparation of temporary and permanent	
	stained/unstained slides.	
III	1. Study of mutant phenotypes of <i>Drosophila</i> .	15
	Preparation of polytene chromosomes.	
	3. Study of sex chromatin (Barr bodies) in buccal smear and hair bud	
	cells (Human).	
	4. Preparation of human karyotype and study the chromosomal	
	aberrations with respect to number, translocation, deletion etc.	
	from the pictures provided.	
	To prepare family pedigrees.	
IV	Virtual Labs (Suggestive sites)	15
	https://www.vlab.co.in	
	https://zoologysan.blogspot.com	
	www.vlab.iitb.ac.in/vlab	
	www.onlinelabs.in	
	www.powershow.com	
	https://vlab.amrita.edu	
	https://sites.dartmouth.edu	
1		

- 1. Lodish et al: Molecular Cell Biology: Freeman & Co, USA (2004).
- 2. Alberts et al: Molecular Biology of the Cell: Garland (2002).
- 3. Cooper: Cell: A Molecular Approach: ASM Press (2000).
- 4. Karp: Cell and Molecular Biology: Wiley (2002). Pierce B. Genetics. Freeman (2004).
- 5. Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis KubyKuby Immunology. W H Freeman (2007).
- 6. Kesar, Saroj and Vashishta N. (2007). Experimental Physiology: Comprehensive Manual. Heritage Publishers, New Delhi

Course Books published in Hindi may be prescribed by the Universities and Colleges

Course prerequisites: To study this course, a student must have had the subject biology in class/12th

The eligibility for this paper is 10+2 from Arts/ Commerce/ Science

Suggested Continuous Evaluation Methods:

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the End of the whole syllabus any remarks/suggestions: University must ensure incorporation of all 04 units including virtual labs in practical evaluation.

Programme/Class: Certificate	Year : First	Semester: Second
Subject: ZOOLOGY		
Course Code: B050201T	Course Title: Biochemistry an	d Physiology

The student at the completion of the course will learn:

- To develop a deep understanding of structure of biomolecules like proteins, lipids and carbohydrates
- How simple molecules together form complex macromolecules.
- To understand the thermodynamics of enzyme catalyzed reactions.
- Mechanisms of energy production at cellular and molecular levels.
- To understand systems biology and various functional components of an organism.
- To explore the complex network of these functional components.
- To comprehend the regulatory mechanisms for maintenance of function in the body.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P:4-0-0

Unit	Topics	Total No. of Lectures (60)
ı	Structure and Function of Biomolecules	8
	 Structure and Biological importance of carbohydrates (Monosaccharides, Disaccharides, Polysaccharides and 	
	Glycoconjugates)	
	 Lipids (saturated and unsaturated fatty acids, Tri-acylglycerols, 	
	Phospholipids, Glycolipids, Steroids)	
	 Structure, Classification and General properties of α-amino acids; Essential and non-essential α-amino acids, Levels of organization in 	
	proteins; Simple and conjugate proteins.	
II	Enzyme Action and Regulation	8
	 Nomenclature and classification of enzymes; Cofactors; Specificity of 	
	enzyme action	
	 Isozymes; Mechanism of enzyme action 	
	 Enzyme kinetics; Factors affecting rate of enzyme-catalyzed 	
	reactions; Derivation of Michaelis-Menten equation, Concept of Km	
	and Vmax, Lineweaver-Burk plot; Enzyme inhibition;	
	 Allosteric enzymes and their kinetics; Regulation of enzyme action 	
Ш	Metabolism of Carbohydrates and Lipids	8
	 Metabolism of Carbohydrates: glycolysis, citric acid cycle, 	
	gluconeogenesis, phosphate pentose pathway	
	 Glycogenolysis and Glycogenesis 	
	 Lipids Biosynthesis of palmitic acid; Ketogenesis, 	

	• β-oxidation and omega -oxidation of saturated fatty acids with even	
	and odd number of carbon atoms	
n. /	Market allowed Darkston and Market and	
IV	Metabolism of Proteins and Nucleotides	6
	 Catabolism of amino acids: Transamination, Deamination, Urea cycle 	
	 Nucleotides and vitamins 	
	 Review of mitochondrial respiratory chain, Oxidative 	
	phosphorylation, and its regulation	
V	Digestion and Respiration	7
	 Structural organization and functions of gastrointestinal tract and 	
	associated glands	
	 Mechanical and chemical digestion of food; Absorptions of 	
	carbohydrates, lipids, proteins, water, minerals and vitamins;	
	Histology of trachea and lung	
	 Mechanism of respiration, Pulmonary ventilation; Respiratory 	
	volumes and capacities; Transport of oxygen and carbon dioxide in	
	blood Respiratory pigments, Dissociation curves and the factors	
	influencing it; Control of respiration	
VI	Circulation and Excretion	8
	• Components of blood and their functions	
	 Components of blood and their functions Haemostasis: Blood clotting system, Blood groups: Rh factor, ABO 	
	and MN	
	Structure of mammalian heart	
	 Cardiac cycle; Cardiac output and its regulation, Electrocardiogram, 	
	Blood pressure and its regulation	
	Structure of kidney and its functional unit; Mechanism of urine	
	formation	
VII	Nervous System and Endocrinology	8
	Characteristics of accuracy recting accurate and accurate	
	Structure of neuron, resting membrane potential Origin of action potential and its propagation across the myelinated.	
	 Origin of action potential and its propagation across the myelinated and unmyelinated nerve fibers 	
	Types of synapse	
	 Endocrine glands - pineal, pituitary, thyroid, parathyroid, pancreas, 	
	adrenal; hormones secreted by them	
	 Classification of hormones; Mechanism of Hormone action 	
VIII	Muscular System	7
	Histology of different types of muscle; Ultra structure of skeletal muscle;	
	Molecular and chemical basis of muscle contraction; Characteristics of	
	muscle twitch; Motor unit, summation and tetanus	
	most of the control of the control of the control	
Suggested R	Readings:	<u> </u>

- 1. Nelson & Cox: Lehninger's Principles of Biochemistry: McMillan (2000)
- 2. Zubayet al: Principles of Biochemistry: WCB (1995)
- 3. Voet&Voet: Biochemistry Vols 1 & 2: Wiley (2004)
- 4. Murray *et al:* Harper's Illustrated Biochemistry: McGraw Hill (2003) Elliott and Elliott: Biochemistry and Molecular Biology: Oxford University Press

Programme/Class: Certificate	Year : First	Semester: Second
Subject: ZOOLOGY		
Course Code: B050202P/R	Course Title: Physiological, Biochemical	& Hematology Lab

The student at the completion of the course will be able to:

- Understand the structure of biomolecules like proteins, lipids and carbohydrates
- Perform basic hematological laboratory testing,
- Distinguish normal and abnormal hematological laboratory findings to predict the diagnosis of hematological disorders and diseases.

Credits: 2	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P:0-0-4

Unit	Topics	Total No. of Lectures (60)
I	1. Estimation of haemoglobin using Sahli'shaemoglobinometer	20
	2. Preparation of haemin and haemochromogen crystals	
	3. Counting of RBCs and WBCs using Haemocytometer	
	4. To study different mammalian blood cell types using Leishman stain.	
	5. Recording of blood pressure using a sphygmomanometer	
	6. Recording of blood glucose level by using glucometer	
II	 Study of permanent slides of Mammalian skin, Cartilage, Bone, Spinal cord, Nerve cell, Pituitary, Pancreas, Testis, Ovary, Adrenal, Thyroid and Parathyroid Recording of simple muscle twitch with electrical stimulation (or Virtual) Demonstration of the unconditioned reflex action (Deep tendon 	15
III	reflex such as knee jerk reflex)	10
	1. Ninhydrin test for α -amino acids.	
	2. Benedict's test for reducing sugar and iodine test for starch.	
	Test for sugar and acetone in urine.	
	4. Qualitative tests of functional groups in carbohydrates, proteins and lipids.	
	5. Action of salivary amylase under optimum conditions.	
IV	Virtual Labs (Suggestive sites)	15
	1. https://www.vlab.co.in	
	https://zoologysan.blogspot.com	
	3. www.vlab.iitb.ac.in/vlab	
	4. www.onlinelabs.in	
	5. www.powershow.com	
	6. https://vlab.amrita.edu	
	7. https://sites.dartmouth.edu	

- 1. Cox, M.M and Nelson, D.L. (2008). Lehninger's Principles of Biochemistry, V Edition, W.H. Freeman and Co., New York.
- 2. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2007). Biochemistry, VI Edition, W.H. Freeman and Co., New York.
- 3. Guyton, A.C. & Hall, J.E. (2006). Textbook of Medical Physiology. XI Edition. Hercourt Asia PTE Ltd. /W.B. Saunders Company.
- 4. Tortora, G.J. & Grabowski, S. (2006). Principles of Anatomy & Physiology. XI Edition John Wiley & sons
- 5. Victor P. Eroschenko. (2008). diFiore's Atlas of Histology with Functional correlations. XII Edition.Lippincott W. & Wilkins.
- 6. Arey, L.B. (1974). Human Histology. IV Edition. W.B. Saunders.
- 7. Kesar, Saroj and Vashishta N. (2007). Experimental Physiology: Comprehensive Manual. Heritage Publishers, New Delhi

Course Books published in Hindi may be prescribed by the Universities and Colleges

Course prerequisites: To study this course, a student must have had the subject biology in class/12th

The eligibility for this paper is 10+2 from Arts/ Commerce/ Science

Suggested Continuous Evaluation Methods:

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the End of the whole syllabus any remarks/ suggestions: University must ensure incorporation of all 04 units including virtual labs in practical evaluation.

Programme/Class: Diploma	Year: Second	Semester: Third
Subject: ZOOLOGY		
Course Code:B050301T	Course Title: Molecular Biology, Bioinstrumentation & Biotechniques	

The student at the completion of the course will be able to have:

- A detailed and conceptual understanding of molecular processes viz. DNA to trait.
- A clear understanding of the processes of central dogma *viz.* transcription, translation *etc.* underlying survival and propagation of life at molecular level.
- Understanding of how genes are ultimately expressed as proteins which are responsible for the structure and function of all organisms.
- Learn how four sequences (3 letter codons) generate the transcripts of life and determine the phenotypes of organisms.
- How genes are regulated differently at different time and place in prokaryotes and eukaryotes.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P:4-0-0

Unit	Торіс	Total No. of Lectures (60)
I	 Process of Transcription Fine structure of gene RNA polymerases Transcription factors and machinery 	7
	 Formation of initiation complex Initiation, elongation and termination of transcription in prokaryotes and eukaryotes 	
II	 The Genetic code Ribosome Factors involved in translation Aminoacylation of tRNA, tRNA-identity, aminoacyltRNAsynthetase Initiation, elongation and termination of translation in prokaryotes and eukaryotes 	7
III	 Regulation of Gene Expression I Regulation of gene expression in prokaryotes: <i>lac</i> and <i>trp</i>operons in <i>E. coli</i> Regulation of gene expression in eukaryotes: Role of chromatin in gene expression Regulation at transcriptional level, Post-transcriptional 	8

	modifications: Capping, Splicing, Polyadenylation	
	 RNA editing. 	
IV	Regulation of Gene Expression II	8
	 Regulation of gene expression in eukaryotes: 	
	Regulation at translational level, Post- translational	
	modifications: protein folding etc.	
	Intracellular protein degradation Comparison RNA interference (RNA)	
	Gene silencing, RNA interference (RNAi) Principle and Types of Niversesses.	
V	Principle and Types of Microscopes	6
	 Principle of Microscopy and Applications 	
	 Types of Microscopes: light microscopy, dark field 	
	microscopy, phase-contrast microscopy,	
	 Fluorescence microscopy, confocal microscopy, 	
	electron microscopy	
VI	Centrifugation and Chromatography	8
	Principle of Centrifugation	
	Types of Centrifuges: high speed and ultracentrifuge	
	 Types of rotors: Vertical, Swing-out, Fixed-angle etc. 	
	 Principle and Types of Chromatography: paper, ion- 	
	exchange, gel filtration, HPLC, affinity	
VII	Spectrophotometry and Biochemical Techniques	8
	Dischamical tachniques, Massurament of all	
	 Biochemical techniques: Measurement of pH, Preparation of buffers and solutions 	
	 Principle of Colorimetry/Spectrophotometry: Beer- 	
	Lambert law	
	 Measurement, applications and safety measures of 	
	radio-tracer techniques	
	radio traser testiniques	
VIII	Molecular Techniques	8
	 Detection of nucleic acid by gel electrophoresis 	
	 DNA sequencingDNA fingerprinting, RFLP 	
	 Polymerase Chain Reaction (PCR) 	
	 Detection of proteins, PAGE, ELISA, Western blotting 	

- 1. Lodish et al: Molecular Cell Biology: Freeman & Co, USA (2004).
- 2. Alberts et al: Molecular Biology of the Cell: Garland (2002).
- 3. Cooper: Cell: A Molecular Approach: ASM Press (2000).
- 4. Karp: Cell and Molecular Biology: Wiley (2002).
- 5. Watson et al. Molecular Biology of the Gene. Pearson (2004).
- 6. Lewin. Genes VIII. Pearson (2004).
- 7. Pierce B. Genetics. Freeman (2004).
- 8. Sambrooket al. Molecular Cloning Vols I, II, III. CSHL (2001).
- 9. Primrose. Molecular Biotechnology. Panima (2001).
- 10. Clark & Switzer. Experimental Biochemistry. Freeman (2000)

Course Books published in Hindi may be prescribed by the Universities and Colleges

Programme/Class: Diploma	Year: Second	Semester: Third
Subject: ZOOLOGY		
Course Code:B050302P	Course Title: Bioinstrumentation & Molecular Biology Lab	

The student at the completion of the course will be able to

- Understand the basic principles of microscopy, working of different types of microscopes
- Understand the basic techniques of centrifugation and chromatography for studying cells and separation of biomolecules
- Understand the principle of measuring the concentrations of macromolecules in solutions by colorimeter and spectrophotometer and use them in Biochemistry.
- Learn about some of the commonly used advance DNA testing methods.

Credits: 2	Core: Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

Unit	Торіс	Total No. of		
		Lectures (60)		
1	1. To study the working principle and Simple,	15		
	Compound and Binocular microscopes.			
	2. To study the working principle of various lab			
	equipments such as pH Meter, Electronic			
	balance, use of glass and micropipettes, Laminar			
	flow, Incubator, Waterbath, Centrifuge,			
	Chromatography apparatus, etc.			
II	 To prepare solutions and buffers. 	15		
	2. To measure absorbance in Colorimeter or			
	Spectrphotometer.			
	3. Demonstration of differential centrifugation to			
	fractionate different components in a mixture.			
III	1. To prepare dilutions of Riboflavin and verify the	15		
	principle of spectrophotometry.			
	2. To identify different amino acids in a mixture			
	using paper chromatography.			
	3. Demonstration of DNA extraction from blood or			
	tissue samples.			
	4. To estimate amount of DNA using			
	spectrophotometer.			
IV	Virtual Labs (Suggestive sites)	15		
	www.labinapp.com			
	www.uwlax.edu			
	www.labster.com			
	www.onlinelabs.in			
	www.powershow.in			
	https://vlab.amrita.edu			

Programme/Class: Diploma	Year: Second	Semester: Fourth
Subject: ZOOLOGY		
Course Code:B050401T	Course Title: Gene Technology, Immunology and	
	Computational Biology	

The student at the completion of the course will be able to:

- Understand the principles of genetic engineering, how genes can be cloned in bacteria and the various technologies involved in it.
- Know the applications of biotechnology in various fields like agriculture, industry and human health.
- To have an in depth understanding about Immune System & its mechanisms.
- Get introduced to DNA testing and utility of genetic engineering in forensic sciences.
- Get introduced to computers and use of bioinformatics tools.
- Enable students to get employment in pathology/Hospital.
- Take up research in biological sciences.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures (60)
I	Principles of Gene Manipulation	10
	Recombinant DNA Technology	
	Selection and identification of recombinant cells	
	Restriction Enzymes, DNA modifying enzymes, Cloning Vectors,	
	Ligation	
	Gene transfer techniques, Gene therapy	
II	Applications of Genetic Engineering	8
	Single cell proteins	
	Biosensors, Biochips	
	 Crop and live stock improvement, development of transgenics 	
	Development of DNA drugs and vaccines	
III	DNA Diagnostics	4
	Genetic analysis of human diseases, detection of known and	
	unknown mutations	
	Concept of pharmacogenomics and pharmacogenetics	
IV	Immune System and its Components	10
	Historical perspective of Immunology, Innate and Adaptive	
	Immunity, clonal selection, complement system	
	 Structure and functions of different classes of immunoglobulins, 	
	Hypersensitivity	
	Humoral immunity and cell mediated immunity	
	HLA complex: organization, class I and II HLA molecules	
V	Biostatistics I	7
	Calculations of mean, median, mode, variance, standard	
	deviation	
	 Concepts of coefficient of variation, Skewness, Kurtosis 	
	Elementary idea of probability and application	

VI	Biostatistics II	7
	 Data summarizing: frequency distribution, graphical presentation- pie diagram, histogram 	
	 Tests of significance: one and two sample tests, t-test and Chi- square test 	
VII	Basics of Computers Basics (CPU, I/O units) and operating systems Concept of homepages and websites, World Wide Web, URLs, using search engines	6
VIII	Databases: nucleic acids, genomes, protein sequences and structures, Bibliography Sequence analysis (homology): pairwise and multiple sequence alignments-BLAST, CLUSTALW Phylogenetic analysis	8

- 1. Primrose &Twyman. Principles of Genome Analysis and Genomics. Blackwell (2003).
- 2. Hartl& Jones. Genetics: principles & Analsysis of Genes & Genomes. Jones & Bartlett (1998).
- 3. S6mbrook et al. Molecular Cloning Vols I, II, III. CSHL (2001).
- 4. Primrose. Molecular Biotechnology. Panima (2001).
- 5. Clark & Switzer. Experimental Biochemistry. Freeman (2000)
- 6. Sudbery. Human Molecular Genetics. Prentice-Hall (2002).
- 7. Wilson. Clinical Genetics-A Short Course, Wiley (2000).
- 8. Pasternak. An Introduction to Molecular Human Genetics. Fritzgerald (2000).
- 9. Biostatistical Analysis (Fourth Edition) by Jerrold H. Zarr, Pearson Education Inc., Delhi.
- 10. Statistical Methods (Eighth Edition) by G. W. Snecdecor and W. G. Cochran, Willey Blackwell
- 11. Biostatistics (Tenth Edition) by W.W. Daniel and C. L. Cross, Wiley
- 12. Introductory Biological Statistics (Fourth Edition) by John E. Havel, Raymond E. Hampton and Scott J. Meiners
- 13. Westheadet al Bioinformatics: Instant Notes. Viva Books (2003).

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects:

The eligibility for this paper is 10+2 with Biology as one of the subject

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the End of the whole syllabus any remarks/ suggestions:

Programme/Class: Degree	Year: Second	Semester: Fourth
Subject: ZOOLOGY		
Course Code:B050402P/R	Course Title: Genetic Engineering and Counselling Lab	

The student at the completion of the course will be able to:

- Understand the principles of genetic engineering with hands-on experiments in mutation detection, testing of infectious diseases like Covid 19.
- Get introduced to DNA testing and utility of genetic engineering in forensic sciences.
- Apply knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics existing software effectively to extract information from large databases and to use this information in computer modeling.
- Use bioinformatics tools to find out evolutionary/phylogenetic relationship of organisms using gene sequences.
- Get employment in Hospitals/Diagnostic and forensic labs/Counsel families with genetic disorders.
- Enable students to take up research in biological sciences.

Credits: 2	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P:0-0-4

Unit	Topic	Total No. of
		Lectures (60)
I	1. Measure the pre and post clitellar lengths of earthworms	10
	and calculate mean, median, mode, standard deviation etc.	
	2. Measure the height and weight of all students in the class	
	and apply statistical measures.	
II	Determination of ABO Blood group	20
	2. To perform bacterial culture and calculate generation	
	time of bacteria.	
	3. To study Restriction enzyme digestion using teaching	
	kits.	
	4. To detect genetic mutations by Polymerase Chain	
	Reaction (PCR) using teaching kits.	
	5. Demonstration of agarose gel electrophoresis for	
	detection of DNA.	
	6. Demonstration of Polyacrylamide Gel Electrophoresis	
	(PAGE) for detection of proteins.	
	7. To calculate molecular weight of unknown DNA and	
	protein fragments from gel pictures.	
III	To learn the basics of computer applications	15
	2. To learn sequence analysis using BLAST	
	3. To learn Multiple sequence alignment using	
	CLUSTALW	
	 To learn about Phylogenetic analysis using the programme PHYLIP. 	
	5. To learn how to perform Primer designing for PCR	
	3. To learn how to perform I time designing for I ex	

	using available	softwares etc.	
IV	Virtual Labs (Suggestive sites)		15
		ntation System- u.be/WPpt3-FanNE	
	2. Colorimeter	https://youtu.be/v4aK6G0bGuU	
	3. PCR Part 1-	https://youtu.be/CpGX1UFSI4A	
	4. PCR Part 2-	https://youtu.be/6IcHAYPTAEw	
	DNA isolatio	n Part 1-	
	https://yout	u.be/QE7Ul0JnY9A	
	DNA isolatio	n part 2- https://youtu.be/-	
	<u>efr_HFeHxM</u>		
	7. DNA curve-	https://youtu.be/ubL8QxTeuG4	
	Spectrophot	ometer-	
	https://yout	u.be/ubL8QxTeuG4	
	Agarose Part	t 1- https://youtu.be/7gvHPFwwg	
	10. Agarose par	t 2- https://youtu.be/j_bOZCHNsSg	
	11. Use software	es like Primer3, NEB cutter	
	12. NCBI, BLAST	, CLUSTAL W, PHYLIP	

- 1. Primrose &Twyman. Principles of Genome Analysis and Genomics. Blackwell (2003).
- 2. Hartl& Jones. Genetics: principles & Analsysis of Genes & Genomes. Jones & Bartlett (1998).
- 3. Sambrooket al. Molecular Cloning Vols I, II, III. CSHL (2001).
- 4. Primrose. Molecular Biotechnology. Panima (2001).

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects:

The eligibility for this paper is 10+2 from Arts/Commerce/Science

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the End of the whole syllabus any remarks/ suggestions: University must ensure incorporation of all 04 units including virtual labs in practical evaluation.

Programme/Class:Degree	Year: Third	Semester:Fifth
Subject:ZOOLOGY		
Course Code: B050501T	Course Title: Diversity of Non-Chord	lates and Economic
	Zoology	

The student at the completion of the course will be able to:

The student at the completion of the course will be able to:

- demonstrate comprehensive identification abilities of non-chordate diversity
- explain structural and functional diversity of non-chordate
- explain evolutionary relationship amongst non-chordate groups
- Get employment in different applied sectors
- Students can start their own business i.e. self employments.
- Enable students to take up research in Biological Science

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Topic	Total No. of Lectures (60)
ı	Protozoa to Coelenterate	7
	 Protozoa – Paramecium (Morphology and 	
	Reproduction)	
	 Porifera – Sycon(Canal System) 	
	 Coelenterata – Obelia (Morphology and Reproduction) 	
II	Ctenophora to Nemathelminthes	7
	Ctenophora - Salient features	
	 Platyhelminthes - Taenia (Tape worm) (Morphology 	
	and Reproduction)	
	 Nemathelminthes – Ascaris lumbricoides (Morphology 	
	and Reproduction)	
III	Annelida	8
	Annelida – Hirudinaria (Leech) (Morphology and	
	Reproduction)	
IV	Arthropoda	8
	 Arthropoda – Palaemon (Prawn) (Morphology, 	
	Appendages, Nervous System and Reproduction)	
V	Mollusca to Hemichordata	
	 Mollusca – Pila (Morphology, Shell, Respiration, Nervous System and Reproduction) 	8
	 Echinodermata – Pentaceros (Morphology and Water Vascular System) 	

VI	Vectors and pests	
	Life cycle and their control of following pests: Gundhi bug, Sugarcane leafhopper, Rodents. Termites and Mosquitoes and their control	8
VII	Economic Zoology-1	7
	Animal breeding and culture: Pisciculture	
VIII	Economic Zoology- 2	7
	Sericulture, Apiculture, Lac-culture, Vermiculture	

- 1. Barnes et al (2009). The Invertebrates: A synthesis. Wiley Backwell 17
- 2. Hunter: Life of Invertebrates (1979, Collier Macmillan)
- 3. Marshall: Parker & Haswell Text Book of Zoology, Vol. I (7th ed 1972, Macmillan)
- 4. Moore: An Introduction to the Invertebrates (2001, Cambridge University Press)
- 5. Brusca and Brusca (2016) Invertebrates. Sinauer
- 6. Jan Pechenik (2014) Biology of the invertebrates. McGraw Hill
- 7. Neilsen (2012). Animal Evolution: Interrelationships amongst living Phyla. Oxford
- 8. Parasitology- Chatterjee
- 9. Parasitology- Chakraborty
- 10. Thomos C. Chung. General Parasitology. Hardcourt Brace and Co. Ltd. Asia, New Delhi.
- 11. Gerard D. Schmidt and Larry S Roberts. Foundations of Parasitology. McGraw Hill.
- 12. Bisht. D.S., Apiculture, ICAR Publication.
- 13. Singh S., Beekeeping in India, Indian council of Agricultural Research, New Delhi.
- 14. Jhingran. V.G. Fish and fisheries in India.,
- 15. Khanna. S.S, An introduction to fishes
- 16. Boyd. C.E. &Tucker.C.S, Pond aquaculture water quality management,
- 17. Biswas.K.P, Fish and prawn diseases,
- 18. Pedigo, L.P. (2002). Entomology and Pest Management, Prentice Hall.
- 19. Lee, Earthworm Ecology
- 20. Stevenson, Biology of Earthworms
- 21. Destructive and Useful Insects by C. L. Metcalf
- 22. Sericulture for Rural Development: Hanumappa (1978), Himalaya Publication,
- 23. Sriculture in India Sarkar, D.C. (1988), CSB, Bangalore.

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects:

The eligibility for this paper is 10+2 with Biology as one of the subject

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the End of the whole syllabus any remarks/ suggestions:

Programme/Class:Degree	Year: Third	Semester:Fifth
Subject:ZOOLOGY		
Course Code: B050502T	Course Title: Diversity of Chordates and Comparative Anatomy	

The student at the completion of the course will be able to:

- Demonstrate comprehensive identification abilities of chordate diversity
- Explain structural and functional diversity of chordates
- Explain evolutionary relationship amongst chordates
- Take up research in biological sciences.

·	
Credits:4	Core Compulsory/Elective
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Topic	Total No. of
		Lectures (60)
ı	Origin of Chordates & Hemichordata	6
	Origin of Chordates. Classification of Phylum Chordata	
	upto the class.	
	Hemichordata: General characteristics, classification and	
	detailed study of <i>Balanoglossus</i> (Habit and Habitat,	
	Morphology, Anatomy, Physiology and Development).	_
II	Cephalochordata and Urochordata	6
	 Cephalochordata: General characteristics, classification and 	
	detailed study of Branchiostoma (Amphioxus) (Habit and	
	Habitat, Morphology, Anatomy, Physiology).	
	 (ii)Urochordata: General characteristics, classification and 	
	detailed study of Herdmania (Habit and Habitat, Morphology,	
	Anatomy, Physiology and Post Embryonic Development).	
Ш	Classification and General Characteristics of Vertebrates	8
	 General characters and Classification of different classes of 	
	vertebrates (Pisces, Amphibia, Reptilia, Aves, Mammalia) up	
	to the order with examples.	
	 Poisonous and Non Poisonous Snakes and biting mechanism. 	
	 Neoteny and Paedogenesis 	
	Migration in birds	
	Dentition in Mammals	
IV	Comparative Anatomy and Physiology of Vertebrates	8
	Integumentary System	
	Structure, functions and derivatives of integument	
	Skeletal System	
	Overview of axial and appendicular skeleton, Jaw suspensorium, Visceral arches	
	visceral dicties	1
V	Digestive System	
v	Alimentary canal and associated glands, dentition	

		8
VI	Respiratory System	8
	Skin, gills, lungs and air sacs; Accessory respiratory organs	
VII	Circulatory System	
	General plan of circulation, evolution of heart and aortic arches	_
	Urinogenital System	8
	Succession of kidney, Evolution of urinogenital ducts, Types of	
	mammalian uteri	
VIII	Nervous System	8
	Comparative account of brain	
	Autonomic nervous system, Spinal cord, Cranial nerves in mammals	
	Sense Organs	
	Classification of receptors	
	Brief account of visual and auditory receptors in man	

- 1. Harvey et al: The Vertebrate Life (2006)
- 2. Colbert et al: Colbert's Evolution of the Vertebrates: A history of the backboned animals through time (5th ed 2002, Wiley Liss)
- 3. Hildebrand: Analysis of Vertebrate Structure (4th ed 1995, John Wiley)
- 4. Kenneth V. Kardong (2015) Vertebrates: Comparative Anatomy, Function, Evolution McGraw Hill
- 5. McFarland et al: Vertebrate Life(1979, Macmillan Publishing)
- 6. Parker and Haswell: TextBook of Zoology, Vol. II (1978, ELBS)
- 7. Romer and Parsons: The Vertebrate Body (6th ed 1986, CBS Publishing Japan)
- 8. Young: The Life of vertebrates (3rd ed 2006, ELBS/Oxford)
- 9. Weichert C.K and William Presch (1970). Elements of Chordate Anatomy, Tata McGraw Hills

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects:

The eligibility for this paper is 10+2 with Biology as one of the subject

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the end of the whole syllabus any remarks/suggestions:

Programme/Class:Degree	Year: Third	Semester:Fifth
Subject:ZOOLOGY		
Course Code: B050503P Course Title: Lab on Virtual Dissection, Anatomy,		, Anatomy,
	Economic Zoology and Parasitology	

The student at the completion of the course will be able to:

- demonstrate comprehensive identification abilities of chordate and non-chordates diversity
- explain structural and functional diversity of chordates and non- chordates
- explain evolutionary relationship amongst chordates and non- chordates
- Generate self employment
- Enable students to take up research in biological sciences.

Credits: 2	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

Unit	Topic	Total No. of
J		Lectures (60)
1	Study of animal specimens of various animal phyla.	15
	1.To prepare permanent stained slide of septal nephridia of	
	earthworm.	
	2.To take out the nerve ring of earthworm.	
	3.To take out hastate plate from <i>Palaemon</i> .	
II	1.Study of animal specimens of various animal phyla	15
	2. Study on use and ethical handling of model organisms	
	(Mice, rats, rabbit and pig).	
	3. To prepare stained/unstained slide of placoid scales.	
	1. Comparative study of bones of different vertebrates.	
	2. Comparative study of histological slides of different	
	tissues of vertebrates.	
III	1. Permanent Preparation of: Euglena, Paramecium	15
	2. Study of prepared slides/specimens of Entamoeba,	
	Giardia, Leishmania, Trypanosoma, Plasmodium,	
	Fasciola, Cotugnia, Taenia, Rallietina, Polystoma	
	Schistosoma, Echinococcus, Enterobius, Ascaris and	
	Ancylostoma	
	3. Permanent Preparation of Cimex (bed bug)/ Pediculus	
	(Louse), Haematopinus (cattle louse), fresh water	
	annelids, arthropods; and soil arthropods.	
	4. Larval stages of helminths and arthropods.	
	5. Permanent mount of wings, mouth parts and	
	developmental stages of mosquito and house fly.	
	Permanent preparation of ticks/ mites, abdominal gills	
	of aquatic insects viz. Chironomus larva, dragonfly and	
	mayfly nymphs, preparation of antenna of housefly.	
	6. Identification of pests.	
	7. Life history of silkworm, honeybee and lac insect.	
	8. Different types of important edible fishes of India.	

	9. Slides of plant nematodes.	
	10. Study of an aquatic ecosystem, its biotic components	
	and food chain.	
	11. Project Report/ model chart making.	
	12. Dissections: through multimedia / models	
	13. Cockroach: Central nervous system	
	14. Wallago: Afferent and efferent branchial vessels,	
	Cranial nerves, Weberian ossicles.	
IV	Virtual Labs (Suggestive sites)	15
	https://www.vlab.co.in	
	https://zoologysan.blogspot.com	
	www.vlab.iitb.ac.in/vlab	
	https://www.vlab.co.in	
	https://zoologysan.blogspot.com	
	www.vlab.iitb.ac.in/vlab	
	www.onlinelabs.in	
	www.powershow.com	
	https://vlab.amrita.edu	
	https://sites.dartmouth.edu	

- 1. Harvey et al: The Vertebrate Life (2006)
- 2. Colbert et al: Colbert's Evolution of the Vertebrates: A history of the backboned animals through time (5th ed 2002, Wiley Liss)
- 3. Hildebrand: Analysis of Vertebrate Structure (4th ed 1995, John Wiley)
- 4. Kenneth V. Kardong (2015) Vertebrates: Comparative Anatomy, Function, Evolution McGraw Hill
- 5. McFarland et al: Vertebrate Life (1979, Macmillan Publishing)
- 6. Parker and Haswell: TextBook of Zoology, Vol. II (1978, ELBS)
- 7. Romer and Parsons: The Vertebrate Body (6th ed 1986, CBS Publishing Japan)
- 8. Young: The Life of vertebrates (3rd ed 2006, ELBS/Oxford)
- 9. Barnes et al (2009). The Invertebrates: A synthesis. Wiley Backwell 17
- 10. Marshall: Parker & Haswell Text Book of Zoology, Vol. I (7th ed 1972, Macmillan)
- 11. Moore: An Introduction to the Invertebrates (2001, Cambridge University Press)
- 12. Brusca and Brusca (2016) Invertebrates. Sinauer
- 13. Jan Pechenik (2014) Biology of the invertebrates. McGraw Hill
- 14. Boradale, L.A. and Potts, E.A. (1961). Invertebrates: A Manual for the use of Students. Asia Publishing Home
- 15. Robert Leo Smith Ecology and field biology Harper and Row publisher
- 16. Handbook of Practical Sericulture : Ullal, S.R. and Narasimhanna, M.N. (1987), Central Silk Board Publication, Bangalore.
- 17. Prost, P. J. (1962). Apiculture. Oxford and IBH, New Delhi.
- 18. Bisht. D.S., Apiculture, ICAR Publication.
- 19. Singh S., Beekeeping in India, Indian council of Agricultural Research, New Delhi.
- 20. Ullal S.R. and Narasimhanna, M.N. Handbook of Practical Sericulture: CSB, Bangalore
- 21. Jolly. M. S. Appropriate Sericultural Techniques; Ed., Director, CSR & TI, Mysore.
- 22. Handbook of Silkworm Rearing: Agriculture and Technical Manual-1, Fuzi Pub. Co.
- 23. Santanam, B. et al, A manual of freshwater aquaculture
- 24. Boyd. C.E. &Tucker.C.S, Pond aquaculture water quality management
- 25. Pedigo, L.P. (2002). Entomology and Pest Management, Prentice Hall.
- 26. Ranganathan L.S, Vermicomposting technology- soil health to human health

Programme/Class: Degree	Year: Third	Semester:Sixth
Subject: ZOOLOGY		
Course Code:B050601T	Course Title: Evolutionary and Develo	pmental Biology

The student at the completion of the course will be able to:

- Understand that by biological evolution we mean that many of the organisms that inhabit the earth today are different from those that inhabited it in the past.
- Understand that natural selection is one of several processes that can bring about evolution, although it can also promote stability rather than change.
- Understand how the single cell formed at fertilisation forms an embryo and then a full adult organism.
- Integrate genetics, molecular biology, biochemistry, cell biology, anatomy and physiology during embryonic development.
- Understand a variety of interacting processes, which generate an organism's heterogeneous shapes, size, and structural features.
- Understand how a cell behaves in response to an autonomous determinant or an external signal, and the scientific reasoning exhibited in experimental life science.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of Lectures (60)
I	Theories of Evolution	8
	Origin of Life	
	 Historical review of evolutionary concept: 	
	Lamarckism, Darwinism (Natural, Sexual and	
	Artifical selection)	
	 Modern synthetic theory of evolution 	
	 Patterns of evolution (Divergence, Convergence, 	
	Parallel, Coevolution)	
II	Population Genetics	8
	 Microevolution and Macroevolution: allele 	
	frequencies, genotype frequencies, Hardy-	
	Weinberg equilibrium and conditions for its	
	maintenance	
	 Forces of evolution: mutation, selection, genetic 	
	drift	
III	Direct Evidences of Evolution	7
	Types of fossils, Incompleteness of fossil record,	
	Dating of fossils, Phylogeny of horse	
IV	Species Concept and Extinction	7
	 Biological species concept (Advantages and 	
	Limitations); Modes of speciation (Allopatric,	
	Sympatric)	

	Mass extinction (Causes, Names of five major extinctions	
V	Gamete Fertilization and Early Development	6
	Gametogenesis, Fertilization	
	Cleavage pattern	
	Gastrulation, fate maps	
	Developmental mechanics of cell specification	
	Morphogenesis and cell adhesion	
VI	Developmental Genes	8
	Genes and development	
	 Molecular basis of development 	
	Differential gene expression	
VII	Early Vertebrate Development	8
	 Early development of vertebrates (fish, birds & 	
	mammals)	
	 Metamorphosis, regeneration and stem cells 	
	 Environmental regulation of development 	
VIII	Late Developmental Processes	8
	 The dynamics of organ development 	
	 Development of eye, kidney, limb 	
	 Metamorphosis: the hormonal reactivation of 	
	development in amphibians, insects	
	 Regeneration: salamander limbs, mammalian liver, Hydras 	
	Aging: the biology of senescence	

- 1. Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing
- 2. Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). *Evolution*. Cold Spring, Harbour Laboratory Press.
- 3. Hall, B. K. and Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and Bartlett Publishers
- 4. Campbell, N. A. and Reece J. B. (2011). *Biology*. IX Edition, Pearson, Benjamin, Cummings.
- 5. Douglas, J. Futuyma (1997). Evolutionary Biology. Sinauer Associates.
- 6. Developmental Biology: T. Subramaniam, (Reprint), Narosa Publishing House Pvt. Ltd., New Delhi (2013).
- 7. Essential Developmental Biology: Jonathan M. W. Slack, (3rd ed.), Wiley-Blackwell. (2012).
- 8. Developmental Biology: From a Cell to an Organism (Genetics & Evolution) eBook: Russ Hodge, Infobase Publishing. (2009).
- 9. Current Topics in Developmental Biology: Roger A. Pedersen, Gerald P. Schatten, Elsevier. (1998).
- 10. Developmental biology: Werner A. Müller, Springer Science & Business Media. (2012).
- 11. Human Embryology and Developmental Biology E-Book: Bruce M. Carlson, Elsevier Health Sciences. (2018).
- 12. Developmental Biology: Michael J. F. Barresi, Scott F. Gilbert, Oxford University Press. (2019).

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects: The eligibility for this paper is 10+2 with Biology as one of the subject

Programme/Class: Degree	Year: Third	Semester: Six
Subject: ZOOLOGY		
Course Code:B050602T	Course Title: Ecology, Ethology, Environment Wildlife	onmental Science and

The student at the completion of the course will learn:

- Complexities and interconnectedness of various environmental levels and their functioning.
- Global environmental issues, their causes, consequences and amelioration.
- To understand and identify behaviours in a variety of taxa.
- The proximate and ultimate causes of various behaviours.
- About the molecules, cells, and systems of biological timing systems.
- Conceptualizing how species profitably inhabit in the temporal environment and space out their activities at different times of the day and seasons.
- To interpret the cause and effect of lifestyle disorders contributing to public understanding of biological timing.
- To understand the importance of wildlife conservation.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks:as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Topic	Total No. of Lectures (60)
ı	History of ecology, Autecology and synecology, Levels of organization, Laws of limiting factors, Study of physical factors	4
II	Levels of organization, Laws of limiting factors, Study of physical factors, Population: Density, natality, mortality, life tables, fecundity tables, survivorship curves, age ratio, sex ratio, dispersal and dispersion ,Exponential and logistic growth, Types of ecosystems with one example in detail, Food chain: Detritus and grazing food chains, , Food web, Energy flow through the ecosystem, Ecological pyramids and Ecological efficiencies, Nutrient and biogeochemical cycle with one example of Carbon cycle	12
III	Community Ecology Community characteristics: species richness, dominance, diversity, abundance, Ecological succession with one example	7

IV	Environmental Hazards	7
	Sources of Environmental hazards	
	Climate changes	
	Greenhouse gases and global warming	
	Acid rain, Ozone layer destruction	
V	Effects of Climate Change	6
	 Effect of climate change on public health 	
	 Sources of waste, types and characteristics, 	
	Sewage disposal and its management, Solid	
	waste disposal, Biomedical waste handling and	
	disposal,	
	 Nuclear waste handling and disposal, Waste 	
	from thermal power plants,	
	 Case histories on Bhopal gas tragedy, Chernobyl 	
	disaster, Seveso disaster and Three Mile Island	
	accident and their aftermath.	
VI	Behavioural Ecology and Chronobiology	8
	 Origin and history of Ethology, 	
	Instinct vs. Learnt Behaviour	
	 Associative learning, classical and operant 	
	conditioning, Habituation, Imprinting,	
	Circadian rhythms; Tidal rhythms and Lunar	
	rhythms	
	Chronomedicine	
VII	Introduction to Wild Life	8
	 Values of wild life - positive and negative; 	
	Conservation ethics; Importance of	
	conservation; Causes of depletion; World	
	conservation, causes of depletion, world	
VIII	Protected areas	8
• • • • • • • • • • • • • • • • • • • •	decetes at eas	Ü
	 National parks & sanctuaries, Community 	
	reserve; Important features of protected areas	
	in India; Tiger conservation - Tiger reserves in	
	India; Management challenges in Tiger reserve	

- 1. Ecology: Theories & Applications. Peter D. Stiling, 2001, Prentice Hall.
- 2. Ecological Modeling. 2008. Grant, W.E. and Swannack, T.M., Blackwell.
- 3. Ecology: The Experimental Analysis of Distribution and Abundance. Charles J. Krebs, 2016, Pearson Education Inc.
- 4. Elements of Ecology. T.M. Smith and R.L. Smith, 2014, Pearson Education Inc.
- 5. Environmental Chemistry. 2010. Stanley and Manahan, E. CRC, Taylor & Francis. London.
- 6. Environment. Raven, Berg, Johnson, 1993, Saunders College Publishing.
- 7. Essentials of Ecology. G.T. Miller, Jr. & Scott. E. Spoolman, 2014, Brooks/Cole, Cengage Learning.
- 8. Freshwater Ecology: A Scientific Introduction. 2004. Closs, G., Downes, B. and Boulton, A. Wiley-Blackwell publisher, Oxford.
- 9. Fundamental Processes in Ecology: An Earth system Approach. 2007. Wilkinson, D.M. Oxford

Programme/Class: Degree	Year: Third	Semester: Sixth
Subject: ZOOLOGY		
Course Code:B050603P	Course Title: Lab on Ecology, Environr	nental Science,
	Behavioral Ecology & wildlife	
Course outcomes:		

The student at the completion of the course will be able to:

- To understand the basic concepts, importance, status and interaction between organisms and environment.
- Get employment in forest services, sanctuaries, conservatories etc.
- Enable students to take up research in wildlife.

Credits: 2	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

Unit	Topic	Total No. of Lectures (60)
I	 Study of life tables and plotting of survivorship curves of different types from the hypothetical/real data provided. Study of population dynamics through numerical problems. Study of circadian functions in humans (daily eating, sleep and temperature patterns). 	26
II	Report on a visit to National Park/Biodiversity Park/Wild life sanctuary	4
III	 Demonstration of basic equipments needed in wildlife studies use, care and maintenance (Compass, Binoculars, Spotting scope, Range Finders, Global Positioning System, Various types of Cameras and lenses) Familiarization and study of animal evidences in the field; Identification of animals through pug marks, hoof marks, scats, pellet groups, nest, antlers etc. Demonstration of different field techniques for flora and fauna 	15
IV	Virtual Labs (Suggestive sites) https://www.vlab.co.in https://zoologysan.blogspot.com www.vlab.iitb.ac.in/vlab	15