Department of Statistics Institute of Social Sciences

M.Sc. (Data Science)			
Program Educational	The primary objective of the MSc. program in Data Science is to develop		
Objectives (PEO's)	skilled professional workforce that is prepared to address the increasing		
	needs in the rapidly expanding area of big data analytics. The program aims		
	to provide skills in quantitative data analyses, data mining, data modeling		
	and prediction, data storage and management, big data processing, data		
	visualization, multimedia big data, programming and communication skills.		
	Software based courses/ training and a large number of practical case studies		
	have been integrated in the program to boost the learner confidence and		
	market acceptability.		
Program Outcomes	On completion of M.Sc. Data Science programme, graduates will be able to		
(PO's):	• Become a skilled Data Scientist in industry, academia, or government		
	organizations.		
	• Use specialist software tools for data storage, analysis and		
	visualization.		
	• Independently carry out research/investigation to solve practical problems		

Syllabus

M.Sc. (Data Science): I Semester				
Course Code: MDS 101		Descriptive Statistics for Data Science	Credit: 4 Max Marks: 60+40 =100	
Course	objectives:	To have basic idea about the presentation	on and analysis of the data.	
Course	e outcomes:	On successful completion of this course, the students will be able to		
		• Present data in different graphical forms		
		• Formulate the data and draw inferer	nce using parametric and non-	
		parametric	tests.	
	Data types: dise	crete, continuous, univariate, multivariate, binary,	character, factor. Exploratory data	
Unit I	analysis: Box p	lot, Stem and leaf, dot plot, central tendency meas	ures, measures of dispersion	
Unit II	Measures of as	sociation: consistency and independence of data w	vith special reference to attributes.	
	Karl Pearsons analysis, covari	Karl Pearsons's correlation coefficient: simple, partial and multiple correlations. Regression analysis, covariance matrix, correlation matrix		
Unit III	I Formulation of statistical hypothesis. Hypothesis testing Student: t-test: single mean test, independent sample t-test, paired sample t-test. Chi-square test: goodness of fit, test of independence, test for correlation and test for dispersion. Confidence limits and confidence intervals.			
Unit IV	ANOVA: Introduction of linear models, one way and two way ANOVA. Non-parametric tests: Sign test, signed rank test, Kolmogrov-Smirnov test, Test of independence (run test). Two sample problem: Wilcoxon Mann-Whitney test, Median test, Kolmogrov-Smirnov test, run test.			
	Books Recommended: 1. Lander, J.P. (2017): R for Everyone-Advanced Analytics and Graphics. Pearson Education.			

2. Dalgaard, P. (2008): Introductory Statistics with R. Springer.
3. Robinson, A.P. and Hamann, J. D. (2010): Forest Analytics with R-An Introduction. Springer.
4. Wolfe, Douglas A. and Schneider, G. (2017): Intuitive Introductory Statistics. Springer.
5. Mood, A.M, Graybill F.A and Boes D.C. (2008): <i>Introduction to the Theory of Statistics</i> . McGraw Hill, New Delhi.
6. Montgomery D.C and Runger G.C. (2013): <i>Applied Statistics and Probability for Engineers</i> . Wiley India, New Delhi.

M.Sc. (Data Science): I Semester				
Course Co	ode: MDS 102	Linear Algebra and Matrix	Credit: 4	
		Computation	Max Marks: 60+40 =100	
Course	objectives:	To study the theory of linear algebra in the	light of data science.	
Course	outcomes:	On successful completion of this course, the	e students will be able to	
		Conceptualized the fundament	tals of vectors and metrics in	
		linear algebra.		
		• Apply these concepts in the fi	eld of data science.	
TI:4 T	Vectors and M	atrices: Operations on matrices and vectors, spec	ial matrices, partitioned matrices,	
Unit I	linear and qua	dratic forms, rank of matrices, determinant of	a matrix, inverse matrices and	
	applications in	linear models and multivariate methods.		
Unit II	Vector and Ma	trix Calculus: Differentiation of scalar with respe	ect to a vector, differentiation of a	
	scalar with resp	ect to a matrix, differentiation of a vector with res	spect to vector, differentiation of a	
	matrix with res	pect to scalar, eigen analysis of real symmetric m	atrices, properties of eigen values,	
	statistical appl	cal application to principal component analysis, use of eigen analysis in constrained		
Unit III	Matrix decom	osition: OR, LU, LDU, Cholesky decomposition	generalized inverse solution of	
	linear equations, Hadamard products, Kronecker products and vector operator.			
Unit	Applications: A	Applications to multivariate normal distribution,	estimation of its parameters and	
IV	testing of hypothesis for mean vector and variance covariance matrix, principal componentanalysis,		trix, principal componentanalysis,	
	linear discriminant analysis, linear models.			
	DOOKS NECOIIII	nenueu.		
	1. Fieller, N. (2	2015): Basics of Matrix Algebra for Statistics with	R. CRC Press.	
	2. Gentle, J. E	. (2017): Matrix Algebra- Theory, Computations	s and Applications in Statistics.	
	Second editi	on. Springer.	1. 1. 1	
	3. Boyd, S. ar Matrices and	A Least Squares, Cambridge University Press.	ppliea Linear Algebra Vectors.	
	4. Allaire, G. <i>Mathematics</i>	and Kaber, S. M. (2008): <i>Numerical Linear Al</i> s. Springer.	gebra, Texts in Applied	
	5. Hogben, L.	(2014). Handbook of Linear Algebra. CRC Press/	Taylor & Francis Group.	
	6. Friedberg, S., Insel, A., and Spence, L. (2019). Linear Algebra. 5/e, Pearson.		5/e, Pearson.	

M.Sc. (Data Science): I Semester				
Course Code: MDS 103		Regression Analysis and	Credit: 4	
		Predictive Modeling	Max Marks: 60+40 =100	
Course	objectives:	To introduce the advanced regression analy	sis and to study theprediction	
		based modeling.		
Course	e outcomes:	On successful completion of this course, the students will be able to		
		• Formulate the linear models in the field of data science.		
		• Use these models in real life p	problems for prediction.	
TT •4 T	Linear Models	: Simple linear regression, estimating the coeffic	eients, accuracy of the coefficient	
Unit I	estimates, mode	el accuracy. Multiple linear regression: regression	coefficients, qualitative Predictors,	
	comparison of	linear regression with K-Nearest Neighbours		
Unit II	Generalized li	near models: logistic regression estimating the	regression coefficients multiple	
	logistic regress	ion, logistic regression for >2 response classes, Po	isson regression, other generalised	
	linear models.			
Unit				
111	Model diagnostics: residuals, comparing models, cross validations: validation set approach, leave-			
	k-fold cross-va	Id cross-validation, stepwise variable selection		
Unit	Regularization: subset selection, shrinkage methods, reduction methods, Elastic net, Bayesian			
IV	shrinkage, non-linear least squares, model selection.			
	Books Recom	imended:		
	1. Lander, J.P.	(2017). R for Everyone-Advanced Analytics and G	Graphics. Pearson Education.	
	2. James, G., Witten, D., Hastie, T. and R. Tibshirani (2013). An Introduction to Statistical Learning: with Applications in R. Springer.		. An Introduction to Statistical	
	3. Montgomery, D.C., Peck, E.A. and Vining, G.G. (2016). <i>Introduction to Linear Regression</i> <i>Analysis</i> . Third Ed., Wiley India Pvt. Ltd		troduction to Linear Regression	
	4. Draper, N.R. and Smith, H. (2015): <i>Applied Regression Analysis</i> . WILEY India Pvt. Ltd. New Delhi; Third Edition, 2015.			

M.Sc. (Data Science): I Semester			
Course Code: MDS 104		Probability and Distribution	Credit: 4
		Theory	Max Marks: 60+40 =100
Course	objectives:	To introduce the concepts of probability	and distribution theoryusing
		R	
Course	Course outcomes: On successful completion of this course, the students will be able to		e students will be able to
	• Apply the results of probability in data science using R.		ty in data science using R.
• Understand the concepts of Probability and its distribution		obability and its distribution	
	using R.		
	Empirical defir	ition of Probability, random variable: discrete and	l continuous. Discrete probability
Unit I	distributions: U	niform, Bernoulli, Binomial, Poisson, Geometric	, Negative Binomial. Simulations
	from distributions in R.		
Unit II	Continuous probability distributions: Uniform, normal, exponential, gamma, weibull, lognormal.		
	Simulations fro	Simulations from distributions in R.	
Unit III	Sequence of random variables, laws of convergence in probability, Chebychev's inequality, SLLN,		

WLLN, Central limit theorem, Illustration using the replicate function of R
Sampling distributions: statistic, standard test statistic: t, chi-square, F. Interrelationships betweent, chi-square and F. Density estimation. Illustrations of sampling distributions using simulation tools.
Books Recommended:
1. Hogg, R., Tanis, E. and Zimmerman, D. (2019): <i>Probability and Statistical Inference</i> . Pearson Education India.
2. Lander, J.P. (2017): R for Everyone-Advanced Analytics and Graphics. Pearson Education.
3. Murdoch, D. and Braun, J. (2020): <i>A First Course in Statistical Programming with R</i> . Cambridge University Press.
4. Miller, I. and Miller, M. (2017): John E. Freund's; Mathematical Statistics. Pearson.
5. Shanmugam, R. and Chattamvelli, R. (2015): Statistics for scientists and engineers. John Wiley

M.Sc. (Data Science): I Semester			
Course Code: MDS 105	Lab Work Based on MDS 101, 102, 103, 104	Credit: 4 Max Marks: 60+40 =100	
Course objectives:	To learn real life/industry applications of theory		
Course outcomes:			

M.Sc. (Data Science): II Semester			
Course Code: MDS 201		Programming for Data Science with R	Credit: 4
			Max Marks: 60+40 =100
Course objectives: To Introduce the elementary and advanced concepts of R language		concepts of R language.	
Course	e outcomes:	On successful completion of this course, the	e students will be able to
		Describe statistical modeling	using R
		• Apply these modeling tools in	Statistical/Machine learning
Unit I	Data exploration and data wrangling: visualization with <i>ggplot2</i> , data transformation with <i>dplyr</i> , Exploratory Data Analysis, R studio projects, data wrangling, creating tibbles, data import with readr, tidy data with tidyr, relational data with dplyr, strings with stringr, factors with forcats, dates and times with lubridate		
Unit II	Programming: pipes with magrittr, functions, function arguments, return values, vectors, atomic vectors, recursive vectors, augmented vectors. Iteration with purr, for loops versus functionals, the map functions, other patterns of for loops.		
Unit III	Modeling: model basics with modelr, visualizing models, formulas and model families, model building, many models with purr and broom, gapminder, creating list-columns, making tidy data with broom, making tidy data with broom.		
Unit IV	Communication: R markdown, basics, code chunks, YAML header, graphics for communication with <i>gglpot2</i> , output options, documents, notebooks, presentations, dashboards, websites.		
	Books Recom	nended:	
	1. Wickham, H	H. and Grolemund, G. (2016): R for Data Science	Import, Tidy, Transform,

Visualize, and Model Data. O'Reilly.
2. Lander, J.P. (2017): R for Everyone-Advanced Analytics and Graphics. Pearson Education.
3. Wickham, H. (2014): Advanced R. CRC Press.
Gandrud, C. (2020): Reproducible Research with R and R Studio. 3rd edition, CRC Press.

M.Sc. (Data Science): II Semester			
Course Code: MDS 202Fundamental of Data Base Management SystemM		Credit: 4 Max Marks: 60+40 =100	
Course objectives: To Provide Knowledge of data base management through R.		ement through R.	
Course	e outcomes:	On successful completion of this course, th	e students will be able to
		Know the objectives of data management	
		To extract data from various of the second sec	data bases
Unit I	RDBAM and S multiple relatio query language	DBAM and SQL RDBMS overview, queries on one table, joins, self joins, inner-join, outer- join, nultiple relations between tables, set operations, aggregate operations, efficient queries, structured uery language	
Unit II	Commands in S	s in SQL, data types in SQL, data manipulation and data processing with SQL	
Unit III	Graphical Prac graphical rede elements, data	Graphical Practice: graphical excellence, graphical integrity, theory of data graphics: data-ink and graphical redesign, data-ink maximization and graphical design, multifunctioning graphical elements, data density and small multiples, aesthetics and technique in data graphical design.	
Unit IV	Import/export data from various data bases in/from R, understanding features/installation of MYSQL, SQLite, excel, MongoDB, postgre SQL, hive, Hbase, installing R interfaces of popular data bases.		
	Books Recommended:		
	 Walkowiak, S. (2016): Big Data Analytics with R. Packt open source. Sumathi, S. and Esakkirajan, S. (2007): Fundamentals of Relational Database Management Systems. Springer. Edward R. Tufte (2001): The Visual Display of Quantitative Information. Prajapati, V. (2013). Big Data Analytics with R and Hadoop. Packt open source 		source.
			elational Database Management
			formation. kt open source

M.Sc. (Data Science): II Semester			
Course Code: MDS 203		Bayesian Data Analysis	Credit: 4 Max Marks: 60+40 =100
Course	objectives:	To introduce the elementary and advanced concepts of Bayesian Data Analysis.	
Course	e outcomes:	 On successful completion of this course, the students will be able to Analyse the data through the techniques of Bayesian inference Apply the Bayesian inference to real life scenario. 	
Unit I	Fundamentals introduction to hierarchical mo	ls of Bayesian Inference: probability and inference. single-parameter models, to multi-parameter models, asymptotic and connections to non-Bayesian approaches, models.	
Unit II	Fundamentals models, posteri and expanding predictive perfo	Fundamentals of Bayesian data analysis, model checking, evaluating, comparing, and expanding models, posterior predictive checking, graphical posterior predictive checks, evaluating, comparing, and expanding models, information criteria and cross-validation, model comparison based on predictive performance, model expansion.	
Unit III	Bayesian com simulations, Gi Effective numb	putation: Introduction to Bayesian computation bbs sampler, Metropolis and Metropolis-Hastings per of simulation draws, Hamiltonian Monte Ca	n, Markov chain Monte Carlo algorithms, convergence of chains, arlo, Hamiltonian dynamics for a

	simple hierarchical model with STAN.	
Unit IV	Regression Models: Bayesian approach to regression models with single multiple predictors.	
	Hierarchical linear models with Bayesian approach and generalized linear models.	
	Books Recommended:	
	 Gelman, A., John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin (2014): <i>Bayesian Data Analysis</i>. 3rd Edition. Chapman and Hill. Peter, D. H. (2009): A First Course in Bayesian Statistical Methods. Springer-Verlag. NewYork. 	
	3. McElreath, R. (2019): <i>Statistical Rethinking: A Bayesian Course with Examples in R and Stan.</i> (Chapman & Hall/CRC Texts in Statistical Science).	
	4. Kruschke, J. (2014): Doing Bayesian Data Analysis: A Tutorial with R, JAGS and Stan. Academic Press.	
	5. Rasmussen, C.E. and Williams, C.K.I. (2006): <i>Gaussian Processes for Machine Learning</i> . MIT Press (2006).	

M.Sc. (Data Science): II Semester					
Course Code: MDS 204		Machine Learning	Credit: 4		
			Max Marks: 60+40 =100		
Course	objectives:	To introduce the basis concepts of machine	learning		
Course outcomes:		On successful completion of this course, the	e students will be able to		
		• Describe the concepts of machine learning			
		• Apply the machine learning to	ools in data science.		
	Machine learni	ng: Concept and issues, Supervised versus unsupe	rvised learning, Regressionversus		
Unit I	Classification p	problem, Algorithms versus Models, Model train	ing: regression and classification		
	models, , mode	l assessment, bias-variance trade-off, hyper param	eter tuning, cross validation, ROC		
	curves.				
Unit II	Tree based methods: Basics of decision trees, a simple tree, tree entropy and information gain, Trees				
	versus linear models, pros and cons of trees, overfitting, pruning a tree, Trees versus linear models,				
IL	bagging, random forests, boosting, fitting of classification and regression trees.				
	Support vector classifier (SVC): linear classification and classification with non linear decision				
	boundaries SVM versus SVC. SVM with more than 2 classes: One-versus-One and One-versus- All				
	case, kernel functions.				
Unit IV	Neural Networks: Overview, single and multilayer neural networks, neural networks for regression				
	and classification	on. kNN classifier and k means clustering as mach	ine learning tools.		
	Books Recommended:				
	1. Lewis, N.D.	(2017): Machine Learning Made Easy with R: An	Intuitive Step by Step Blueprint		
	for Beginner	rs. CreateSpace Independent Publishing Platform.			
	2. Burger, S.V	. (2018): Introduction to Machine Learning with	R: Rigorous mathematical		
	modeling. O	Reilly.			
	Lantz, B. (201	9): Machine Learning with R: Expert Techniqu	es for Predictive Modeling.Packt		
	Publications, 3rd edition.				

M.Sc. (Data Science): II Semester		
Course Code: MDS 205	Lab Work Based on MDS 201, 202, 203, 204	Credit: 4 Max Marks: 60+40 =100
Course objectives:	To learn real life/industry applications of theory	

Commencenteer			
Course outcomes:			

M.Sc. (Data Science): III Semester				
Course Code: MDS 301		Multivariate Methods in Data Credit: 4		
		Science	Max Marks: 60+40 =100	
Course objectives:		To introduce the elementary and advanced	concepts of multivariateanalysis.	
Course outcomes:		On successful completion of this course, the students will be able to		
		• Describe the methods and tec	hniques of multivariate analysis	
		in data science.		
		• Apply these methods & techn	iques in real life problem.	
T T •/ T	Multivariate da	ata and its summaries: numeric and graphical,	outlier detection and inferences,	
Unit I	multivariate di	stance measures, reducing data complexity, Prin	cipal component analysis (PCA),	
TT AL TT	exploratory fac	tor analysis, multidimensional scaling.	11.	
Unit II	Discriminant	Analysis: discrimination using distance me	easures, normality assessment,	
	transformations, discrimination using Bayes theorem, linear discriminant analysis, quadratic			
	logistics regression			
Unit III	Confirmatory factor analysis and structured equation modeling: motivation for structured models			
	scale assessment, structured equation models, partial least squares, SEM with large samples.			
Unit IV	Segmentation methods, Clustering: types, hierarchical methods, limitations; PCA with Cluster			
	analysis, Classification methods.			
	DOOKS RECOILI	nended:		
	1. Bryan F.J. Manly, Jorge A. Navarro Alberto (2017): <i>Multivariate Statistical Methods: A Primer</i> . Chapman and Hall/CRC. Fourth edition.			
	2. Chapman, C. and McDonnell Feit, E. (2019): <i>R for Marketing Research and Analytics</i> . II Edition. Springer.			
	3. Hardly W.K Springer-Ve	L. and Simor L. (2015): <i>Applied Multivariate S</i> rrlag.	tatistical Analysis, 4th Edition,	
	4. Richard A. Prentice hal	Johnson and Dean W. Wichern (2019): <i>Applied</i> I I India, 7th Edition.	Multivariate Statistical Analysis.	

M.Sc. (Data Science): III Semester			
Course Code: MDS 302		Programming for Data Science Credit: 4	
		with Python	Max Marks: 60+40 =100
Course objectives:		To introduce the basic and advanced eleme	ents of Pythonprogramming
Course	e outcomes:	On successful completion of this course, the	e students will be able to
		• Demonstrate the programming skills in Python	
Apply the Python programming for data analysis		ng for data analysis	
	Python Language Basics, IPython, and Jupyter Notebooks: IPython Basics, Tab Completion,		
Unit I	Introspection, Matplotlib integration, executing code from the clipboard. python language basics,		
	scalar types. data structures and sequences, tuple, list, set, and dict comprehensions, namespaces		
	scope, and local functions, returning multiple values, currying: partial argument application,		
	generators, errors and exception handling, errors handling. files and the operating system.		
Unit II	The NumPy ndarray: a multidimensional array object, creating ndarrays, data types for ndarrays,		
	arithmetic with	numpy arrays, basic indexing and slicing, trans	posing arrays and swapping axes,
	universal funct	ions: fast element-wise array functions, array-orier	nted programming with arrays, file

	input and output with arrays, pseudorandom number generation. introduction to pandas data			
	structures, series, data frame, reindexing, indexing, selection and filtering, integer indexes, sorting			
	and ranking. data loading, storage, and file formats reading and writing data in text format, JSON			
	Data, XML and HTML: Web Scraping, Binary Data Formats.			
Unit III	Data Cleaning and preparation: handling missing data, data transformation, string manipulation. data			
	wrangling: hierarchical indexing, combining and merging datasets, reshaping and pivoting. plotting			
	and visualization: matplotlib api primer, plotting with pandas and seaborn, other python visualization			
	tools. data aggregation and group operations: groupby mechanics, data aggregation, apply: general			
	split-apply-combine, pivot tables and cross-tabulation.			
Unit IV	Time series: date and time data types and tools, time series basics, date ranges, frequencies, and			
	shifting, time zone handling, periods and period arithmetic, resampling and frequency conversion.			
	advanced pandas: categorical data, advanced groupby use, techniques for method chaining.			
	introduction to modeling libraries in python: interfacing between pandas and model code, creating			
	model descriptions with patsy, introduction to statsmodels, scikit-learn.			
	Books Recommended:			
	1. McKinney, W. (2018): Python for Data Analysis. O'Reilly.			
	2. Nelli, F.(2018): Python Data Analytics: with Pandas, NumPy and Matplotlib. A press.			
	3. David J. Pine (2019): Introduction to Python for Science and Engineering. CRC Press.			
	4. Jake vanderPlas (2017): Python Data Science Handbook – Essential Tools for Working with			
	Data.O'Really Media.			
	Johansson, R.(2019): Numerical Python-Scientific Computing and Data Science Applications			
	withNumPy, SciPy and Matplotlib. A press,			

M.Sc. (Data Science): III Semester				
Course Code: MDS 303		Operations Research	Credit: 4	
			Max Marks: 60+40 =100	
Course	objectives:	To introduce the basic and advanced conce	pt of Operations Research	
Course outcomes:		On successful completion of this course, the students will be able to		
		• Formulate the real life decision	on making problem into	
		mathematical model.		
		• Solve complex decision maki	ng problems through various	
		techniques of Operations Rese	earch.	
	Introduction to	Operation Research-Scope, Applications and Li	mitations of Operation Research,	
Unit I Linear Programming Problem (LPP), Properties of Linear Programming, basic assi			rogramming, basic assumptions,	
	Mathematical formulation of LPP, Solution of LPP-Simplex method (Big –M method, Two phase			
	method), Revis	.od), Revised simplex method		
TI	Primal and dual problem, dual simplex method, economic interpretation of duality, sensitivity		erpretation of duality, sensitivity	
Unit II	analysis, parametric programming			
Unit III	Transportation problem (Balanced/Unbalanced), Methods of basic feasible solution, MODI method,		c feasible solution, MODI method,	
	Assignment pr	oblem, Hungarian Method. Basic concepts, Con	struction, Rules, precautions and	
	advantages of network, CPM and PERT Networks, Obtaining of critical path, Introduction to ga			
	theory, Two Pe	rson Zero-Sum game-Solution of games with saddl	e points and without saddle points,	
	games, Domina	ince principle		
	Unit IV			
	Introduction to	Integer Programming Problem (IPP), Formulation	and Applications of IPP, Cutting	
	Plane methods	: Fractional cut, Mixed Integer Methods, Bran	ch and Bound method: Dakin's	
	approach, Mult	i-objective Optimization, Goal programming, Fuz	zy goal programming	
	Books Recommended:			

1. Taha, H. (2019): Operations Research. 10th edition, Prentice Hall India.
2. Gupta, K. P. and Hira, D.S. (2007): Operations Research. S. Chand & co
3. Salkin, H.M. (1975): Integer Programming. Addison Wesky.
4. Rao, S.S. (1989): Optimization: Theory and Applications. Wiley Eastern.
5. Hadley G. (1970): Nonlinear and Dynamic Programming. Addison Wesley.
6. Bazara and Shetty (1979): Nonlinear Programming. John Wiley.
Hillier and Lieberman (1991): Introduction Mathematical Programming. McGraw Hill.

M.Sc. (Data Science): III Semester				
Course C	ode: MDS 304	Time Series Analysis	Credit: 4	
			Max Marks: 60+40 =100	
Course objectives:		To provide knowledge of elementary and a	dvanced concepts of Time	
		Series Analysis		
Course outcomes:		On successful completion of this course, the students will be able to		
		• Demonstrate the concepts of t	time series analysis	
		Forecasts with valid conclusion	ons based on appropriate time	
		series data.		
TT •4 T	Characteristics	of Time Series: the nature of time series data, time	series statistical models, measures	
Unit I	of dependence,	stationary time series, estimation of correlation, ve	ector-valued and multidimensional	
	series. time series regression and exploratory data analysis: classical regression in the time series			
TT •4 TT	context, explor	context, exploratory data analysis, smoothing in the time series context.		
Unit II	partial autocorrelation forecasting estimation integrated models for nonstationary data building			
	ARIMA Model	A Models, regression with autocorrelated errors, multiplicative seasonal ARIMA Models		
Unit III	Spectral Analys	Spectral Analysis and Filtering: cyclical behavior and periodicity, the spectral density, periodogram		
	and discrete fourier transform, nonparametric spectral estimation, parametric spectral estimation,			
	multiple series and cross-spectra, linear filters, GARCH Models, Long Memory ARM		dels, Long Memory ARMA and	
	Fractional Differencing, Unit Root Testing.			
Unit IV	State Space Models: Linear Gaussian Model, filtering, smoothing, and forecasting, maximum			
	likelihood esti	mation, missing data modifications, structural	models: signal extraction and	
	torecasting, state-space models with correlated errors, bootstrapping state space models.			
	DOOKS NECOIL	imenueu:		
	1. Shumway, I <i>Examples</i> . F	R.H. and Stoffer, D.S. (2017): <i>Time Series Analy</i> . Fourth Edition.Springer.	sis and Its Applications: With R	
	2. Montgomer and Forecas	y, D.C., Jennings, C. and Kulahci, M. (2016): <i>Intr</i> sting. Second Ed., Wiley.	oduction to Time Series Analysis	
	Box, G., Jenkir Control. Fifth I	ns, G.M. Reinsel, G.C. and Ljung, G. (2016): <i>Tim</i> Ed., Wiley.	e Series Analysis: Forecastingand	

M.Sc. (Data Science): III Semester				
Course Code: MDS 305	Lab Work Based on MDS 301, 302, 303, 304	Credit: 4 Max Marks: 60+40 =100		
Course objectives:	To learn real life/industry appl	ications of theory		
Course outcomes:				

M.Sc. (Data Science): IV Semester				
Course Code: MDS 401		Big Data Analytics	Credit: 4	
			Max Marks: 60+40 =100	
Course objectives:		To study the specialized aspects of big data	analytics.	
Course outcomes:		On successful completion of this course, the students will be able to		
		• Identify big data and its real li	fe implications	
		• Analyze the problem of big da	ata with the help of R and	
		Hadoop	-	
TT 1 1	Introduction big	g data, big bata toolbox: Hadoop and Spark, tradition	onal limitations with the softwares,	
Unit I	expanding men	nory with the bigmemory package, parallel compu	iting, Boosting R performance for	
	big data.	big data.		
Unit-II	Hadoop architecture: Hadoop Distributed File System, MapReduce framework, single-node Hadoop			
	in Cloud, HDlr	n Cloud, HDInsight-a multi-node Hadoop cluster on Azure, smart energy meter readingsanalysis		
	example-using	example-using K on HDInsight cluster		
Unit-III	Relational Database Management Systems: SQLite with R, MariaDB with R on amazon EC2			
	instance, PostgreSQL with R on amazon RDS. Non-Relational (NoSQL) Databases: processing big			
T T 1 . T T T	data using MongoDB, HBase.			
Unit-IV	Spark for big data analytics: Spark with a multi-node HDInsight cluster, Reading the data into HDFS			
	and Hive. Machine learning methods for big data: GLM examples, naive Bayes with H2O on			
	Hadoop, neural	networks with H2O on Hadoop.		
	Books Recommended:			
	1. Walkowiak,	S. (2016): Big Data Analytics with R. Packt open	source.	
	2. Pries, K. H. Managers. C	and Dunnigan, R. (2015): <i>BIG DATA ANALYTIC</i> CRC Press.	S- A Practical Guide for	
	Prajapati, V. (2013): Big Data Analytics with R and Hadoop. Packt open source.			

M.Sc. (Data Science): IV Semester			
Course Code: MDS 402		Marketing Research and Analytics	Credit: 4
			Max Marks: 60+40 =100
Course objectives:		To improve the quality of decision making of marketing research	
		through the study of relevant data and infor	mation
Course outcomes:		On successful completion of this course, the students will be able to	
		• Evaluate and design marketing research problems.	
		• Analyze the marketing research models with the help of R	
		Programming.	
	Reducing Data Complexity: consumer brand rating data, principal component analysis and		
Unit I	perceptual maps, exploratory factor analysis, multidimensional scaling. Linear modeling: handling		
	highly correlated variables, linear models for binary outcomes: logistic regression, hierarchical		
	models, Bayesı	models, Bayesian hierarchical linear models, quick comparison of the effects.	
Unit-II	Confirmatory factor analysis and structural equation modeling: the motivation for structural models,		
	scale assessment: confirmatory factor analysis (cfa), general models: structural equation models, the		
	partial least squares (pls) alternative.		
Unit-III	Segmentation: clustering and classification: segmentation philosophy, segmentation data, clustering,		
	classification, prediction: identifying potential customers. association rules for market basket		
	analysis: the basics of association rules, retail transaction data: market baskets, finding and		
	visualizing association rules, rules in non-transactional data: exploring segments again.		
Unit-IV	Choice modeling: choice-based conjoint analysis surveys, simulating choice data, fitting a choice		ating choice data, fitting a choice
	model, adding consumer heterogeneity to choice models, hierarchical bayes choice models, design		hical bayes choice models, design
	of choice-based conjoint surveys. behavior sequences: web log data, basic event statistics		log data, basic event statistics,

identifying sequences (sessions), markov chains for behavior transitions.		
Books Recommended:		
1. Chapman, C. and McDonnell Feit, E. (2019): <i>R for Marketing Research and Analytics</i> . II Edition. Springer.		
2. Ohri, A, (2013): R for Business Analytics. Springer.		
Malhotra, N.K., Daniel, N. and Birks, D.F. (2017): <i>Marketing Research: An Applied Approach</i> . Pearson Education Limited.		

M.Sc. (Data Science): IV Semester				
Course C	ode: MDS 403	Spatial Statistics for Remotely Sensed	Credit: 4	
		Images	Max Marks: 60+40 =100	
Course	abiaatiwaa			
Course objectives:		To study data analysis with reference to spa	itial data.	
Course outcomes:		On successful completion of this course, the students will be able to		
		• Understand spatial data, image, image format, types of images		
		• Classifications and analysis of supervised and unsupervised		
	Quest: 1 1-4 A	images.	Lucia francisco f	
Unit I	images basic	n overview, some measurements on spatial data	, Image, Image formats, types of	
	radiometric and geometric, image registration.			
Unit II	Image enhancement: Point wise intensity transformation histogram equalization and matching			
	linear smoothing, non-linear smoothing, low-pass filtering, high-pass filtering.			
Unit III	Image transformations: Spectral indices, Principal component transformation, Fourier			
	transformation, wavelet transformation, image restoration, Image segmentation, Edge/Regionbased			
TT • .	segmentation, spectral clustering for image segmentation, edge detection			
Unit	Supervised and Unsupervised image classification: Maximum likelihood classifier, Distance based			
1 V	classification, parallelepiped classifier, kNN classifier, linear discrimination, support vector			
	classification k	ural network classifiers, tree based classifiers, clustering based unsupervised		
	classification, k-means clustering, fuzzy k means clustering, agglomerative hierarchical clustering,			
	classification classification accuracy assessment			
	Books Recommended:			
	1. Canty, M.J. (2019): Image Analysis, Classification and Change Detection in Remote Sensing- With Algorithms for Python. 4 th edition, CRC Press.			
	2. Richards, J. edition, Spri	A., Jia, X (2006): Remote Sensing Digital Imag nger.	e Analysis: An introduction. 4 th	
	Petrou, M., Petr	cou, C.(2010): Image Processing: The fundamenta	<i>ls</i> . 2 nd edition, Wiley	

	M.Sc. (Data Science): IV Semester	
Course Code: MDS 404	Cloud Computing	Credit: 4
		Max Marks: 60+40 =100

Course	objectives:	To provide the conceptual knowledge of Cloud Computing	
Course outcomes:		 On successful completion of this course, the students will be able to Develop technological foundation of cloud computing Make innovations using cloud computing 	
Unit I	Systems Modeling, Clustering and Virtualization: Distributed System Models and Enabling Technologies, Computer Clusters for Scalable Parallel Computing, Virtual Machines and Virtualization of Clusters and Data centers. Foundations: Introduction to Cloud Computing, Migrating into a Cloud, Enriching the "Integration as a Service" Paradigm for the Cloud Era, The Enterprise Cloud Computing Paradigm		
Unit II	Infrastructure as a Service (IAAS) & Platform and Software as a Service (PAAS / SAAS):Virtual machines provisioning and Migration services, On the Management of Virtual machines for Cloud Infrastructures, Enhancing Cloud Computing Environments using a cluster as a Service, Secure Distributed Data Storage in Cloud Computing. Aneka, Comet Cloud, T-Systems, Workflow Engine for Clouds, Understanding Scientific Applications for Cloud Environments		
Unit III	Monitoring, Management and Applications: An Architecture for Federated Cloud Computing, SLA Management in Cloud Computing, Performance Prediction for HPC on Clouds, Best Practices in Architecting Cloud Applications in the AWS cloud, Building Content Delivery networks using Clouds, Resource Cloud Mashups.		
Unit IV	Governance and Case Studies: Organizational Readiness and Change management in the Cloud age, Data Security in the Cloud, Legal Issues in Cloud computing, Achieving Production Readiness for Cloud Services.		
	 Books Recommended: 1. Vecciola, B. and Selvi (2017): Mastering Cloud Computing: Foundations and Applications Programming. Tata McGraw Hill. 2. Rittinghouse and Ransome (2009): Cloud Computing: Implementation, Management and Security. CRC Press, 3. Doss, A. (2013): Cloud Computing. Tata McGraw Hill. 4. Jamsa, K. (2012):Cloud Computing: SaaS, PaaS, IaaS, Virtualization, Business Models, Mobile, Security and More. Jones & Bartlett Learning. Sosinsky, B. (2010): Cloud Computing Bible Wiley-India 2010 		

M.Sc. (Data Science): IV Semester		
Course Code: MDS 405	Lab Work Based on MDS 401, 402, 403, 404	Credit: 4 Max Marks: 60+40 =100
Course objectives:	To learn real life/industry applications of theory	
Course outcomes:		